Serum protein electrophoresis | |
---|---|
Intervention | |
MeSH | D001797 |
Serum protein electrophoresis (SPEP) is a laboratory test that examines specific proteins in the blood called globulins. Blood must first be collected, usually into an airtight vial or syringe. Electrophoresis is a laboratory technique where the blood serum (the fluid portion of the blood after the blood has clotted) is placed on special paper treated with agarose gel and exposed to an electric current to separate the serum protein components into five classifications by size and electrical charge, those being serum albumin, alpha-1 globulins, alpha-2 globulins, beta globulins, and gamma globulins.
Contents |
Prealbumin is the fraction migrating faster than albumin toward the anode. It is the same as transthyretin (TTR). Mutations in transthyretin is associated with hereditary amyloidosis. True prealbumin is generally below the limit of detection in serum protein electrophoresis, but may be detected in electrophoresis of concentrated CSF.
A fall of 30% is necessary before the decrease shows on electrophoresis. Usually a single band is seen. Heterozygous individuals may produce bisalbuminaemia - two equally staining bands, the product of two genes. Some variants give rise to a wide band or two bands of unequal intensity but none of these variants is associated with disease. Increased mobility results from the binding of bilirubin, nonesterified fatty acids, penicillin and acetylsalicylic acid, and occasionally from tryptic digestion in acute pancreatitis.
Absence of albumin, known as analbuminaemia, is rare. A decreased level of albumin, however, is common in many diseases, including liver disease, malnutrition, malabsorption, protein-losing nephropathy and enteropathy.
Even staining in this zone is due to alpha-1 lipoprotein (High density lipoprotein - HDL). Decrease occurs in severe inflammation, acute hepatitis, and cirrhosis. Also, nephrotic syndrome can lead to decrease in albumin level; due to its loss in the urine through a damaged leaky glomerulus. An increase appears in severe alcoholics and in women during pregnancy and in puberty.
The high levels of AFP that may occur in hepatocellular carcinoma may result in a sharp band between the albumin and the alpha-1 zone.
Orosomucoid and antitrypsin migrate together but orosmucoid stains poorly so alpha 1 antitrypsin (AAT) constitutes most of the alpha-1 band. Alpha-1 antitrypsin has an SG group and thiol compounds may be bound to the protein altering their mobility. A decreased band is seen in the deficiency state. It is decreased in the nephrotic syndrome and absence could indicate possible alpha 1-antitrypsin deficiency. This eventually leads to emphysema from unregulated lung elastase breakdown by neutrophils in the lung tissue. The alpha-1 fraction does not disappear in alpha 1-antitrypsin deficiency, however, because other proteins, including alpha-lipoprotein and alpha-1 acid glycoprotein, also migrate there. As a positive acute phase reactant, AAT is increased in acute inflammation.
Bence Jones protein may bind to and retard the alpha-1 band.
Two faint bands may be seen representing alpha-1 antichymotrypsin and vitamin D binding protein. These bands fuse and intensify in early inflammation due to an increase in alpha-1 antichymotrypsin, an acute phase protein.
This zone consists principally of alpha-2 macroglobulin (AMG) and haptoglobin. There are typically low levels in haemolytic anaemia (haptoglobin is a suicide molecule which binds with free haemoglobin released from red blood cells and these complexes are rapidly removed by phagocytes). Haptoglobin is raised as part of the acute phase response, resulting in a typical elevation in the alpha-2 zone during inflammation. A normal alpha-2 and an elevated alpha-1 zone is a typical pattern in hepatic metastasis and cirrhosis.
Haptoglobin/haemaglobin complexes migrate more cathodally than haptoglobin as seen in the alpha-2 - beta interzone. This is typically seen as a broadening of the alpha-2 zone.
Alpha-2 macroglobulin may be elevated in children and the elderly. This is seen as a sharp front to the alpha-2 band. AMG is markedly raised (10-fold increase or greater) in association with glomerular protein loss, as in nephrotic syndrome. Due to its large size, AMG cannot pass through glomeruli, while other lower-molecular weight proteins are lost. Enhanced synthesis of AMG accounts for its absolute increase in nephrotic syndrome.
AMG is mildly elevated early in the course of diabetic nephropathy.
Cold insoluble globulin forms a band here which is not seen in plasma because it is precipitated by heparin. There are low levels in inflammation and high levels in pregnancy.
B lipoprotein forms an irregular crenated band in this zone. High levels are seen in type II hypercholesterolaemia, hypertriglyceridemia, and in the nephrotic syndrome.
Transferrin and beta lipoprotein (LDL) comprises the beta-1. Increased beta-1 protein due to the increased level of free transferrin is typical of iron deficiency anemia, pregnancy, and oestrogen therapy. Increased beta-1 protein due to LDL elevation occurs in hypercholesterolemia.
Beta-2 comprises C3 (Complement protein 3). It is raised in the acute phase response. Depression of C3 occurs in autoimmune disorders as the complement system is activated and the C3 becomes bound to immune complexes and removed from plasma. Fibrinogen, a beta 2 protein, is found in normal plasma but also absent from normal serum. Occasionally, blood drawn from heparinized patients does not fully clot, resulting in a visible fibrinogen band between the beta and gamma globulins.
The immunoglobulins (IgA, IgM, IgG, IgE and IgD) are the only proteins present in the normal gamma region, but note that immunoglobulins may be found in th alpha and beta zones. If the gamma zone shows an increase (or spike), the first step in interpreting the graph is to establish if the region is narrow or wide. If it is elevated it could be elevated in a single narrow "spike-like" manner indicating monoclonal gammopathy or a broad "swell-like" manner (wide) indicating polyclonal gammopathy.
C-Reactive Protein:is found in between the beta and gamma zones producing beta/gamma fusion.
IgA: This immunoglobulin has the most anodal mobility and migrates in the region between the beta and gamma zones also causing a beta/gamma fusion in patients with cirrhosis, respiratory infection, skin disease, or rheumatiod arthritis (increased IgA).